If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-10=54
We move all terms to the left:
v^2-10-(54)=0
We add all the numbers together, and all the variables
v^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $
| (5x)°+100=180 | | 11/x=55/90 | | 20-(12+x)=38 | | X+20+3x-40=90 | | –2n−3−9=5n+2 | | 2(x-1+6x-(4(2x-1)+2)=0 | | -x/4=-54 | | -58=-w/9 | | 2(d−5)−3=1 | | -5x-8=3x-24 | | –3+6u=7u | | 4x^+81=0 | | 12x-4+5x+2=6x+4 | | 5/2a+6=30/4a+8 | | 3/3(3x-6)=4x+3 | | 2x^-4=0 | | 20x^2-100x=0 | | 14+q=225 | | 4x(2)+12x=135 | | 7x+14=−35 | | 4b-13=0 | | 6x+40=160 | | 9x^+49=0 | | 12•3(^x+5)-4=44 | | 3.3x=0.78 | | (3x-23)°+x=(2x+2)°+22 | | 3.3x=7.8 | | 2x^-64=0 | | 7+2x=4x+5 | | 8/d=0.3 | | 5x+7x+8=56 | | 3+6x-2-x=31 |